Luận văn Bài toán biên không chính qui cho hệ phương trình vi phân hàm bậc cao

Phương trình vi phân hàm mặc dù ra đời đã lâu nhưng bắt đầu được quan tâm từ những năm 20 của thế kỉ trước nhờ những ứng dụng của nó trong các lĩnh vực vật lý, cơ học, kinh tế, nông nghiệp, Trong sự phát triển đó, các bài toán biên đóng một vai trò nổi bật ở cả lý thuyết và thực tiễn ứng dụng. Cho tới nay, có một lớp đủ rộng những bài toán chính quy x t f x t (n) ( ) = ( )( ) với điều kiện biên h x i n i ( ) = = 0 1,., ( ) đã được nghiên cứu và trình bày trong các tài liệu chuyên khảo [1], [2]. Những điều kiện đủ cho tính giải được của những bài toán loại này cũng đã được giải quyết như trong [4], [5], [7], [10], [11], [16], Tuy nhiên đối với bài toán biên không chính quy, các kết quả thu được còn khá khiêm tốn và chưa đủ tổng quát. Như ở [14], [15], trường hợp toán tử f có dạng f x t g t x t x t ( )( ) = ( , ,., ( ) (n−1) ( )) đã được nghiên cứu đầy đủ; trong khi với phương trình vi phân hàm x t f x t (n) ( ) = ( )( ) , bài toán có trọng số đã được giải quyết trong [13], cũng như bài toán hai điểm trong [6], [7], và bài toán nhiều điểm Vallée-Poussin trong [8]

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

HỖ TRỢ TÌM VÀ TẢI TÀI LIỆU

  • Từ ngày 01/05/2022

    Luanvan365 sẽ có thêm dịch vụ hỗ trợ các bạn tìm kiếm các tài liệu, luận văn ở nhiều website khác nhau
    Bạn có thể liên hệ với Admin để được hỗ trợ nhé
  • THÔNG TIN LIÊN HỆ


    Phone: 0909.773687 (Zalo, Text) Facebook : Facebook chat hỗ trợ

  • XEM THÊM THÔNG TIN

    Xem thêm bài viết
LIÊN HỆ NGAY

TIN KHUYẾN MÃI

  • Thư viện tài liệu Phong Phú

    Hỗ trợ download nhiều Website

  • Nạp thẻ & Download nhanh

    Hỗ trợ nạp thẻ qua Momo & Zalo Pay

  • Nhận nhiều khuyến mãi

    Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY