Luận văn Liên thông finsler

Hình học vi phân của các mặt trong không gian Ơclit ba chiều đã được nghiên cứu từ nửa cuối thế kỷ XIX với những công trình nghiên cứu của Gauss, Christoffel. Phép tính tenxơ đã được nghiên cứu vào những năm 1900 qua các công trình của Ricci và Levi-Civita. Để nghiên cứu sự biến thiên của các trường vectơ, các trường tenxơ trên mặt nói riêng và trên đa tạp nói chung người ta cần dựa vào phép tịnh tiến song song. Trong không gian afin phép tịnh tiến song song được định nghĩa một cách trực quan và dễ dàng. Tuy nhiên, trên các mặt nói riêng và trên các đa tạp khả vi nói chung việc định nghĩa phép chuyển dời song song không hề đơn giản. Để giải quyết vấn đề này thì lý thuyết liên thông ra đời. Người đầu tiên trình bày khái niệm chuyển dời song song đối với các mặt là Levi-Civita (năm 1917). Đến năm 1918 qua những công trình nghiên cứu của mình, nhà toán học Đức Paul Finsler (1894- 1970) đã cho ra đời “Hình học Finsler” theo quan điểm của toán học cổ điển và đến năm 1934 E.Cartan là người đầu tiên nghiên cứu hình học Finsler theo quan điểm của toán học hiện đại. Hình học Finsler được xem như là sự mở rộng của hình học Riemann. Ngay từ khi ra đời, hình học Finsler đã được nhiều nhà toán học quan tâm như: E. Cartan, V. Barthel, H. Rund, S.S Chern, M.Matsumoto, và trở thành một hướng nghiên cứu quan trọng của hình học vi phân hiện đại và phát triển mạnh mẽ cho đến ngày nay. Trong những năm gần đây, metric Finsler đã được nghiên cứu và sử dụng rộng rãi chẳng những trong hình học vi phân mà còn cả trong giải tích phức hiện đại, tôpô vi phân, lý thuyết số,.

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC