Newton - Kantorovich iterative regularization and the proximal point methods for nonlinear ILL - posed equations involving monotone operators

Many issues in science, technology, economics and ecology such as image processing, computerized tomography, seismic tomography in engineering geophysics, acoustic sounding in wave approximation, problems of linear programming lead to solve problems having the following operator equation type (A. Bakushinsky and A. Goncharsky, 1994; F. Natterer, 2001; F. Natterer and F. W¨ubbeling, 2001): A(x) = f; (0.1) where A is an operator (mapping) from metric space E into metric space Ee and f 2 Ee. However, there exists a class of problems among these problems that their solutions are unstable according to the initial data, i.e., a small change in the data can lead to a very large difference of the solution. It is said that these problems are ill-posed. Therefore, the requirement is that there must be methods to solve ill-posed problems such that the smaller the error of the data is, the closer the approximate solution is to the correct solution of the derived problem. If Ee is Banach space with the norm k:k then in some cases of the mapping A, the problem (0.1) can be regularized by minimizing Tikhonov’s functional: Fδ α(x) = kA(x) − fδk2 + αkx − x+k2; (0.2)

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

HỖ TRỢ TÌM VÀ TẢI TÀI LIỆU

  • Từ ngày 01/05/2022

    Luanvan365 sẽ có thêm dịch vụ hỗ trợ các bạn tìm kiếm các tài liệu, luận văn ở nhiều website khác nhau
    Bạn có thể liên hệ với Admin để được hỗ trợ nhé
  • THÔNG TIN LIÊN HỆ


    Phone: 0909.773687 (Zalo, Text) Facebook : Facebook chat hỗ trợ

  • XEM THÊM THÔNG TIN

    Xem thêm bài viết
LIÊN HỆ NGAY

TIN KHUYẾN MÃI

  • thư viện luận văn

    Thư viện tài liệu Phong Phú

    Hỗ trợ download nhiều Website

  • thư viện luận văn

    Nạp thẻ & Download nhanh

    Hỗ trợ nạp thẻ qua Momo & Zalo Pay

  • thư viện luận văn

    Nhận nhiều khuyến mãi

    Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY