<p> Bài toán dự báo chuỗi thời gian với đối tượng dự báo là biến ngẫu nhiên X thay đổi theo thời gian nhằm đạt được độ chính xác dự báo cao luôn là thách thức đối với các nhà khoa học không chỉ trong nước mà còn đối với các nhà khoa học trên thế giới. Bởi lẽ, giá trị của biến ngẫu nhiên này tại thời điểm t sinh ra một cách ngẫu nhiên và việc tìm một phân phối xác xuất phù hợp cho nó không phải lúc nào cũng dễ dàng. Muốn làm được điều này dữ liệu lịch sử cần được thu thập và phân tích, từ đó tìm ra phân phối ướm khít với nó. Tuy nhiên, một phân phối tìm được có thể phù hợp với dữ liệu ở một giai đoạn này, nhưng có thể sai lệch lớn so với giai đoạn khác. Do đó, việc sử dụng một phân phối ổn định cho đối tượng dự đoán là không phù hợp với bài toán dự báo chuỗi thời gian. Chính vì lý do trên, để xây dựng mô hình dự báo chuỗi thời gian cần thiết phải có sự liên hệ, cập nhật dữ liệu tương lai với dữ liệu lịch sử, xây dựng mô hình phụ thuộc giữa giá trị dữ liệu có được tại thời điểm t với giá trị tại các thời điểm trước đó t t 1, 2. Nếu xây dựng quan hệ X X X X t t t p t p t t q t q 1 1 2 2 1 1 cho ta mô hình hồi quy tuyến tính ARIMA[15]. Mô hình này đã được áp dụng rộng rãi bởi cơ sở lý thuyết dễ hiểu và dễ thực hành, hơn nữa mô hình này đã được tích hợp vào hầu hết các phần mềm thống kê hiện nay như Eviews, SPSS, Matlab, R, . Tuy nhiên, nhiều chuỗi thời gian thực tế cho thấy nó không biến đổi tuyến tính. Do đó mô hình tuyến tính như ARIMA không phù hợp. R. Parrelli đã chỉ ra trong [28], các chuỗi thời gian về độ dao động của chỉ số kinh tế hay tài chính thường có quan hệ phi tuyến. Mô hình phổ biến cho dự báo chuỗi thời gian phi tuyến phải kể đến mô hình GARCH [25,28]. Hạn chế của mô hình GARCH lại nằm ở việc phải giả sử dữ liệu dao động tuân theo một phân phối cố định (thường là phân phối chuẩn) trong khi dữ liệu thực tế cho thấy phân phối thống kê lại là phân phối nặng đuôi [39] (trong khi phân phối chuẩn có độ lệch cân đối). Một lựa chọn khác cho dự báo chuỗi thời gian được phát triển gần đây hơn là mô hình mạng thần kinh nhân tạo (ANN). Các mô hình ANN không dựa trên phân phối tất định cho dữ liệu mà nó hoạt động tương tự bộ não con người, cố gắng tìm ra quy luật và đường đi của dữ liệu đào tạo, kiểm tra thực nghiệm và tổng quát hóa kết quả. Với cách hoạt động của nó, các mô hình ANN thường sử dụng cho mục đích phân lớp dữ liệu [23]. Gần đây hơn, lý thuyết mới về học máy thống kê đang được nhiều nhà khoa học chú ý là phương pháp vector học máy (SVM) cho bài toán phân lớp và dự báo [36,11,31]. SVM được áp dụng rộng rãi hơn trong nhiều lĩnh vực như xấp xỉ hàm, ước lượng hồi quy và dự báo [11,31]. Tuy nhiên, hạn chế lớn nhất của SVM là khi tập đào tạo lớn, nó đòi hỏi lượng tính toán khổng lồ cũng như độ phức tạp của bài toán hồi quy tuyến tính trong đó. </p>
<p> Đất nước ta đang trên đà phát triển theo hướng công nghiệp hóa, hiện đại hóa. Cùng với đó là nhu cầu sử dụng năng lư ...
<p> Hiện nay tình trạng giết mổ gia súc, gia cầm thủ công tự phát đang xảy ra ở rất nhiều nơi. Với số lượng điểm giết mổ ...
<p> Đặt vấn đề Một trong những vấn đề nằm trong những quan tâm hàng đầu đặt ra cho sự nghiệp đổi mới đất nước, đó là ph ...
<p> Tiến bộ của khoa học và công nghệ ngày càng được ứng dụng phục vụ công cuộc chăm sóc sức khỏe con người nhiều hơn.Kỹ ...
<p> Nghị quyết số 29-NQ/TW ngày 04 tháng 11 năm 2013 của Hội nghị lần thứ tám, Ban Chấp hành Trung ương Đảng khóa XI về " ...
Hỗ trợ download nhiều Website
Hỗ trợ nạp thẻ qua Momo & Zalo Pay
Khi đăng ký & nạp thẻ ngay Hôm Nay